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COEFFICIENTS OF NONVANISHING 
FUNCTIONS IN H 

BY 

C H A R L E S  H O R O W I T Z  

ABSTRACT 

Let B denote  the class of functions analytic in the unit disc of C which satisfy 
0 < [f(z)l  < 1. It is proved that there exists a number  c < 1 such that if f E B 
and if f ( z )  = ET.o a.z", then I a .  I < c for n _-> 1. 

1. Introduction 

Let B denote the class of functions analytic in the unit disc of C which satisfy 

0 < l / ( z ) l < l  for I z l < l .  

We consider the coefficient problem for B, as posed by Krzyz [4]; that is, we seek 

c,=supl . f (") (O)/n! l ;  n =  l , 2 , . . . .  

It has been conjectured that c, = 2/e for all n, with extremal function 

~ Z "  + 1 / 
[ . (z )  = exp [z--7-Z~_ 1j. 

This conjecture has been verified up to n = 4 (see [2] and [3]). For general n, 

much less is known. However, some information is available. For example, since 

B is a normal family of analytic functions, we are assured that the maximum c. is 

attained for each n. More significantly, the form of the extremal functions is 

known; indeed, Atzmon [1] and Hummel, Scheinberg and Zalcman [3] have 

shown that 

c. = If" (O)[n !l 

for some f of the form 
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{ ~ e'A' + z} 
(1) f (z)  = exp - a~ ,,---S---- , 

k - ,  e - z  

where the ak are nonnegative numbers, and {e*e~ } are various points on the unit 

circle. In the language of Hardy space theory, the f which attains c, is a singular 

inner function whose associated measure has at most n support points. Hence- 

forth we shall restrict all of our attention to such functions. 

From the formula 

1 
(2) f'"'(O)/n! = ~ fo 2" f(e")e-'"'dO 

it follows immediately that c, =< 1 for all n. Somewhat surprisingly, this is the best 

uniform estimate of the c, which has so far been obtained. Our purpose in the 

present article is to show that indeed there exists a number c < 1 such that 

c , < c  for all n. 

Our method is to estimate, more or less directly, the integral in (2) when f is of 

the form (1). It appears that this technique cannot yield a sharp value for c, and 

so we have not expended undue effort refining it. 

I am grateful to Professors D. Aharonov and A. Atzmon for suggesting to me 

both the problem treated here and the method of its solution. I have also 

benefited from their many helpful comments and suggestions during the course 

of the work. 

2 .  T h e  r e s u l t s  

Our theorem will proceed quite easily from two lemmas. We state them at the 

outset. 

LEMMA 1. Let f be as in (1), and let ex p { ih ( O )} = f ( e 'e) denote the "boundary 
function" off.  Thus, in particular, h is real-valued. De]ine the sets 

[ 3 I K , =  0 : 0 N 0 < 2 7 r  and h ' (O)>~n 

and 

K2={O:0=<O <27r and h ' ( 8 ) < ~  n}. 

Then at least one of these sets is of Lebesgue measure greater than 2/3. 

The significance of Lemma 1 becomes clear if we turn our attention to formula 
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(2). The integral which we wish to estimate there is simply that of 

exp{i[h(O)- nO]}, and in view of Lemma 1, the exponent h(O)- nO has a large 

derivative on a sizable portion of the circle. Such integrals are estimated in the 

following result, which generalizes a well-known lemma of van der Corput ([5], 

p. 197). 

LEMMA 2. Let f be a smooth real-valued function on the interval [a,b]. 
Assume that f" is of constant sign on [a, b] and that If'l > M > 0 throughout the 
interval. Then 

rs: r{   , alwa s 
exp[if(x)]dx <-<- 2/Msin (b-a)M2 if M ( b - a ) <  Tr. 

For the sake of clarity of the exposition, it seems wise to prove Lemma 2 

before Lemma 1. We turn to that proof immediately. 

First, let us note that if 

then 

fo b exp[if(x)]dx = Re ~', 

I fobexp[if(x)]dx l = R = f, bexp(i[f(x)- a])= fobcos[f(x)-- a]dx, 

and so, without changing the hypotheses, we might as well bound real integrals 

of the form f~cosf(x)dx. 
Second, we may assume without loss of generality that [ '  and f" are positive on 

[a,b]. Indeed, if f ' < 0 ,  we simply consider - f .  If f"<O, we replace f(x) by 

- f ( b  - x ) .  
Having made the above normalizations, let x = g(y)  be the inverse function of 

f. Then 

fabCOS f(x )dx = fcdcos y g'(y )dy, 

where c = f(a) and d = f(b). We claim that our last integral is majorized by 

(3) IfJ  c~ Yg'(y)dy I 

where I is some subinterval of [c, d] on which cos y does not change its sign. If 

cos y is of constant sign on [c, d], the claim is trivial. If not, we write 
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fed fc(k +(l/2))n cos y g ' (y)dy = cos y g ' (y)dy 

I-I ~0+13/2))~r "~" f(d 
+ ~ cos y g '(y)dy 

j=k  30-~(l/2))~r / +(1/2))Ir cos y g'(y)dy. 

Since g'  is positive and decreasing, the above series is alternating in sign, and 

decreasing after the first term. Thus it is majorized by one of its terms, and our 

claim is proved. 

From the hypothesis that f ' >  M on [a, b], we conclude that 

1 
0 <  g ' ( y ) < ~ ;  y ~ [c,d], 

and it follows immediately that the expression (3) is less than or equal to 2/M, 

proving one assertion of the lemma. 

Now, let us assume that M(b - a)  < r and we shall seek a refined estimate for 

(3). In light of the inequality 

I, J7 g ' ( y ) , ~ y  _-< g ' ( y ) a y  = b - a ,  

we may view the integral 

f cosyg ' (y )dy  

as a weighted average with total mass =< ( b -  a)  of the values of cos y on L 

Clearly such an average is greatest when the maximal density (1/M in our case) is 

placed on the largest part of the function cosy;  that is, when g ' =  1/M on an 

interval of length (b- a)M. We conclude that 

f~cos[(x)dxl < 1 ~ -<'-: 'a)' '  2 (bTaM)" = M J-<~b-=~i2)M COS y dy = ~"  sin ~ Q.E.D. 

We turn now to the proof of Lemma 1. Our interest is directed at the function 

h defined by 

exp[ih (0)] = .f(e'~ 

with [ as in (1). A simple calculation shows that 
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It is perhaps worthwhile to remark here that although we write h(O) and not 

h (e" ) ,  we relate to h as a function on the circle; that is, we identify the 

endpoints of the 0-interval [0,2rr]. Now 

(4) h ' ( O )  = k = ,  2 a ~  c s c  = ( 0  - O k )  . 

an expression in which every term is positive on [0, 2rr]. Similarly, one finds that 

h"' is always positive. From these observations, there emerges a rough sketch of 

the behavior of h '  and h". First of all, between any two successive points Ok, h" 

rises continually from - oo to + oo. Meanwhile, on such an interval, h '  falls from 

+ o0 to some positive minimum, after which it rises back to + oo. 

We proceed to investigate the set K, mentioned in the statement of Lemma 1. 

We shall (harmlessly) include in K, the points {#k} where h ' =  oo. With this 

convention, the above description of h '  shows that K, is an open subset of the 

circle, consisting of at most n disjoint open intervals I~,. �9 L. Moreover, each Ij 

contains at least one of the points {Ok}. 

We wish to estimate the length of a typical Ij in terms of those 0~'s which it 

contains. If this length is greater than 2/3, the conclusion of Lemma 1 is already 

fulfilled. If not, we can write Ij as the interval (aj,/3j), with flj - aj < 2/3. But 

Thus 

3 n  h ' ( / 3 j ) > Y ,  ~ a k c s c  = (/3j Ok >CSC = ( r  ak. 
T = - -  - = Ok ~ 1 i II 

1 (e ~ / ~ a < s i n [ ~ ( / 3 j - a j ) ] < ~ ( / 3 j  ors). x / ~  ,, a k  = = - 

Summing over j, we obtain an estimate of the measure of K,, namely 

We shall now show that if IKI[ is small, then h'  is "of ten"  smaller than n/2; 
that is, [K2[ is large. In particular, we shall estimate fr-K, h '(O)dO, where T is the 

whole interval [0,2~r]. According to formula (4), this integral equals 

1 

f , '  ] = E E 5 cse (o - ok) ao 
" O k E I  j - - I  i 

=~ e~,~[a, ctg[l(~,-Ok']-akctg[l(~ 
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where aj and fls are the endpoints of Ij, j = 1 ,2 , . - . , s .  Thus, by Schwarz's 
inequality, 

fT_K I h'(O)dO 

_--< ]~, ( , ~  ak) ''2 [ ( e~ ,  a~ ctg2 [~( /3 j -  0 k ) ] ) ' a +  (o~,akctg2 [ ~ ( a , -  0k)]) m]. 

Since ctg2(a)< csc2(a) for all a, it follows from (4) that our last expression is 
dominated by 

(6, ]~j (~.d, ak)'a[(2h,(fl,,,'a+(2h,(a,,,'a]= 2k/~n ~ (e~,ak)'a 

We now distinguish between two cases. In the first, I K, I > 2/3, and the claim of 

the lemma holds. In the second case, I K, I =< 2/3. According to (5), it follows that 

~ (e~,ak)'/2<=N/~n. 

Hence the estimate (6) implies that 

Jr-,,, h - <  2n. f(0)d~ 

Since T - K 1  is of measure at least 2 z r -  2/3, one deduces immediately that 
I K21> 2/3. This completes the proof of Lemma 1. 

It is now quite easy to obtain our desired estimate of c < 1 for the integral 

• f exp(i[h(O)- nOl)dO. 2~r 
Writing g(O)= h(O)-nO, we have seen that Ig'(0)l > n/2 on some set K of 

measure I KI= 2/3. Since g " =  h", whose behavior we have analyzed, and since 

we may take K to be a subset of either KI or K2 as constructed in Lemma 1, we 

may assume that K is a union of at most 2n intervals J~, . . . ,3 ,  on which g" is 

finite and of constant sign. Let us index these intervals J~ so that 

IJk I < 2rr/n;  k = 1 ,2 , . . . , q ,  

and 

IJkl>--27r/n; k=q+l,q+2,...,r. 
According to Lemma 1, 
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] fx exp[ig(O)]dO [ <= ~t l fs~ exp[ig(O)]dO I 
- < s 4 sin (4[Jk I ) + 2  ~ IJ~ [, 

k = l  n "ll'k= q 

and this is less than or equal to 

si~ t t) + 

by the concavity of the function sin x on [0,�89 

It is an exercise in differential calculus to show that subject to our conditions 

[Jk] = 2/3 
k = !  

and 

[Jkl< 2---~, k= l ,2 , - . - , q ,  
?l 

the expression (7) will be largest when q = r, and when q is as large as possible, 

namely q = 2n. One  concludes that 

exp[ig(O)ldO -<8sin < 5  = 

Putting together all of the pieces, we have now proved the following result: 

THEOREM. If f E B, and if f ( z )  = E~=0 a,z ", then 

REFERENCES 

1. A. Atzmon, Extremal functions for functionals on some classes of analytic functions, to appear 
in J. Math. Anal. Appl. 

2. D. Bishouty, to appear. 
3. J. A. Hummel, S. Scheinberg, and L. Zalcman, A coefficient problem for bounded nonvanish- 

ing functions, J. Analyse Math. 31 (1977), 169-190. 
4. J. Krzyz, Coefficient problem for bounded nonvanishing functions, Ann. Pollon. Math. 20 

(1968), 314. 
5. A. Zygmund, Trigonometric Series, Volume 1, Cambridge University Press, London and New 

York, 1968. 

DEPARTMENT OF MATHEMATICS 
TECHNION - -  ISRAEL INSTITUTE OF TECHNOLOGY 

HAIFA, ISRAEL 


